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In Summary
 Solving a system of m equations in n unknowns is 

equivalent to finding the “zeros” of a vector valued 
function from

m→n.

 When m > n, such a system will “typically” have 
infinitely many solutions.  In “nice” cases, the solution 
will be a function from

m-n→n.

The Implicit Function theorem will tell us what is meant 
by the word “typical.”



More reminders

 In general, the 0-level curves are not the graph 

of a function, but, portions of them may be. 

 Though we cannot hope to solve a system 

“globally,” we can often find a solution function 

in the neighborhood of a single known solution.

 “Find” is perhaps an overstatement, the implicit 

function theorem is an existence theorem and 

we aren’t actually “finding” anything. 
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Consider the contour line  f (x,y) = 0 in the  xy-plane.

Idea:  At least in small regions, this curve might be described 

by a function  y = g(x) .  

Our goal:  find such a function!
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y = g(x)

Start with a point (a,b) on the 

contour line, where the 

contour is not vertical:

In a small box around (a,b), 

we can hope to find  g(x).

Make sure all of the y-partials 

in this box are close to D.
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How to construct g(x)

Define

Iterate  x(y)  to find its fixed 

point, where f (x,y) = 0.  Let 

fixed point be  g(x).

x

Non-trivial issues:

• Make sure the iterated map converges. (Quasi-Newton’s 

methods!)

• Make sure you get the right fixed point.  (Don’t leave the box!)

b



A bit of notation

 To simplify things, we will write our vector 

valued function F : n+m  n.

 We will write our “input” variables as 

concatenations of n-vectors and m-vectors.

e.g. (y,x)=(y1, y2,. . ., yn, x1, x2,. . ., xm) 

 So when we solve F(y,x)=0 we will be solving 

for the y-variables in terms of the x-variables.



Implicit Function Theorem---in brief

 F : n+m  n has continuous partials.

 Suppose b n and a m with F(b,a)=0.

 The n x n matrix that corresponds to the y 

partials of F (call it D) is invertible.

Then “near” a there exists a unique function g(x) 

such that F(g(x),x)=0; moreover g(x) is 

continuous.



What on Earth. . .?!

Mysterious hypotheses



Differentiable functions--- (As we know...?)

A vector valued function F of several real variables is 

differentiable at a vector v if in some small 

neighborhood of v, the graph of F “looks a lot like” an 

affine function.

( ) ( ) ( )  F z A z v F v

That is, there is a linear transformation A so that for all 

z “close” to v,

Suppose that F (v) = 0. When can we solve F(z) = 0 in some 

neighborhood of v?  

Well, our ability to find a solution to a particular system of 

equations depends on the geometry of the associated vector-

valued function.

Where A is the 

Jacobian matrix made 

up of all the partial 

derivatives of F.



So suppose we have F(b,a)  = 0 and F is differentiable at 

(b,a), so there exists A so that for all (y,x) “close” to (b,a)

Geometry and Solutions

( , ) (( , )) ( , )   F y x A y b x a F b a

But F(b,a)  = 0! 



So suppose we have F(b,a)  = 0 and F is differentiable at 

(b,a), so there exists A so that for all (y,x) “close” to (b,a)

Geometry and Solutions

Since the geometry of F near (b,a) is “just like” the geometry 

of A near 0, we should be able to solve F(y , x) = 0 for y in 

terms of x “near” the known solution (b,a) provided that we can 

solve A(y,x) = 0 for y in terms of x.  

( , ) (( , ))  F y x A y b x a



When can we do it?

Since A is linear, 

A(x ,y)=0 looks like this.

We know that we will be able to 

solve for the variables y1, y2, and 

y3 in terms of x1 and x2 if and 

only if the sub-matrix . . .

is invertible.
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Hypothesis no longer mysterious

When can we solve F(y , x) = 0 for y in terms of x “near” (b,a)? 

When the domain of the function has more dimensions than the 

range, and when the “correct” square sub-matrix of A=F’(y,x) is 

invertible. 

That is, the square matrix made up of the partial derivatives of the 

y-variables.  This sub-matrix is D in implicit function theorem.
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